Location:Home > Recombinant antibody

V5 tag Nanoselector Magnetic beads

Details and Advantages
Applications: IP,CHIP,MS,Purification
Reactivity: V5 tag
Conjugate: Magnetic beads
Advantages:

· Consistent and reproducible results;

· No heavy & light antibody chains Extraordinarybinding,even under harsh conditions;

· High affinity and Short incubation (5-30min)

Summary >

Description:
V5 tag Nanoselector Magnetic beads have been specifically designed to bind V5 tag-fusion proteins. V5 tag Nanoselector Magnetic beads are based on small high-affinity recombinant alpaca antibody fragments covalently coupled to the surface of magnetic beads. V5 tag Nanoselector Magnetic beads are an ideal tool to isolate or purify V5 tag-fusion proteins fast and efficiently.

Ligand: Anti-V5 tag single domain antibody fragment (VHH, Nanobody)
Bead size: ~ 40 µm
Reactivity: Recognizes V5 tag fusion protein selectively
Binding capacity: High binding capacity, 10 µL slurry bind about 10 µg of recombinant V5-GFP.
Storage: Shipped at ambient temperature. Upon receipt store at 4°C. Stable for 1 year. Do not freeze.
Storage Buffer: 50 % slurry in PBS containing 20 % Ethanol

Background:
The V5 tag is a 14 amino acid peptide derived from a small epitope on the P and V proteins of simian virus 5 (SV5), a member of the paramyxovirus family. This peptide can be expressed and detected with the protein of interest as an amino-terminal or carboxy-terminal fusion. Because of its small size, V5 tag is unlikely to affect the tagged protein’s biochemical properties. V5 tag is useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques.
V5 tag Nanoselector Magnetic beads are ready to used resins for immunoprecipitation/pulldown of V5 tag fusion proteins.

Performance >

Immunoprecipitation (IP)/Co-IP
Mass spectrometry (MS)
Enzyme activity measurements
Purification

Experimental scheme >

Immunoprecipitation protocol

 

Mammalian cell lysis

Note: Harvesting of cells and cell lysis should be performed with ice-cold buffers. We strongly recommend to add protease inhibitors to the Lysis buffer to prevent degradation of your target protein and its binding partners.

For one immunoprecipitation reaction, we recommend using ~106- 107 cells.

 

1. Choice of lysis buffer:

* For cytoplasmic proteins, resuspend the cell pellet in 200 µL ice-cold Lysis buffer by pipetting up and down. Supplement Lysis buffer with protease inhibitor cocktail and 1 mM PMSF (not included).

* For nuclear/chromatin proteins, resuspend cell pellet in 200 µL ice-cold RIPA buffer supplemented with DNaseI (f.c. 75-150 Kunitz U/mL), MgCl2 (f.c. 2.5 mM), protease inhibitor cocktail and PMSF(f.c. 1 mM)(not included)

2. Place the tube on ice for 30 min and extensively pipette the suspension every 10 min.

3. Centrifuge cell lysate at 17,000x g for 10 min at +4°C. Transfer cleared lysate (supernatant) to a pre cooled tube and add 300 µL Dilution buffer supplemented with 1 mM PMSF and protease inhibitor cocktail (not included). If required, save 50 µL of diluted lysate for further analysis (input fraction).

 

Beads equilibration

1. Resuspend the beads by gently pipetting up and down or by inverting the tube. Do not vortex the beads!

2. Transfer 25 µL of bead slurry into a 1.5 mL reaction tube.

3. Add 500 µL ice-cold Dilution buffer.

4. Separate the beads with a magnet until the supernatant is clear.

5. Discard the supernatant.

 

Protein binding

1. Add diluted lysate to the equilibrated beads.

2. Rotate end-over-end for 1 hour at +4°C.

 

Washing

1. Separate the beads with a magnet until the supernatant is clear.

2. If required, save 50 µL of supernatant for further analysis(flow-through/non-bound fraction).

3. Discard remaining supernatant.

4. Resuspend beads in 500 µL Wash buffer.

5. Separate the beads with a magnet until the supernatant is clear. Discard the remaining supernatant.

6. Repeat this step at least twice.

7. During the last washing step, transfer the beads to a new tube.

Optional: To increase stringency of the Wash buffer, test various salt concentrations e.g. 150 mM - 500 mM,and/or add a non-ionic detergent e.g. Triton™ X-100.

 

Elution with 2x SDS-sample buffer

1. Remove the remaining supernatant.

2. Resuspend beads in 80 µL 2x SDS-sample buffer.

3. Boil beads for 5 min at +95°C to dissociate immunocomplexes from beads.

4. Separate the beads with a magnet.

5. Analyze the supernatant in SDS-PAGE.


Elution with Glycine-elution buffer

1. Remove the remaining supernatant.

2. Add 50–100 µL Glycine-elution buffer and constantly pipette up and down for 30 - 60 sec at +4°C.

3. Separate the beads with a magnet until the supernatant is clear..

4. Transfer the supernatant to a new tube.

5. Immediately neutralize the eluate fraction with Neutralization buffer.

6. Repeat this step at least once to increase elution efficiency .